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Abstract — This paper presents fundamentals of a family of 
convolutional codes, nicknamed  turbo-codes, built  from a 
particular concatenation  of  two  recursive  systematic codes,  
linked  together  by non uniform interleaving. Decoding  calls 
on iterative processing in  which each component decoder  
takes advantage of  the work of the other at the previous step, 
with the aid of the original concept of extrinsic  information. 
For sufficiently large  interleaving sizes, the correcting 
performance of turbo-codes,investigated by simulation, appears 
to be close  to the theoretical limit predicted by Shannon. 

 
I. INTRODUCTION 

 
Convolutional error correcting or channel coding has 

become widespread in the design of digital transmission 
systems. One major reason for this is the possibility of 
achieving real-time decoding without noticeable 
information losses thanks to the well-known soft-input 
Viterbi algorithm [I].Moreover, the same decoder may 
serve for various coding rates by means of puncturing 
[2]. Two kinds of convolutional codes are of practical 
interest: nonsystematic convolutional (NSC) and 
recursive systematic convolutional  (RSC) codes. Though 
RSC codes have the same free distance df as NSC codes 
and exhibit better performance at low signal to noise 
ratios (SNR’s) and/or when punctured, only NSC codes 
have actually been considered for channel coding, except 
in Trellis-coded modulation (TCM) [3]. For a given rate, 
the error-correcting power of convolutional codes, 
measured as the coding gain at a certain binary error rate 
(BER) in comparison with the uncoded transmission, 
grows more or less linearly with code memory ν.  
Unfortunately, the complexity of the decoder is not a 
linear function of ν and it grows exponentially as  ν.2 ν.  

In order to obtain high coding gains with moderate 
decoding complexity, concatenation has proved to be an 
attractive scheme. Concatenated coding schemes were 
first proposed by Forney [4] as a method for achieving 
large coding gains by combining two or more relatively 
simple building blocks or component codes (sometimes 
called constituent codes). The resulting codes had the 
error-correction capability of much longer codes, and 
they were endowed with a structure that permitted 
relatively easy to moderately complex decoding. A serial 
concatenation of codes is most often used for power-
limited systems such as transmitters on deep-space 
probes. The most popular of these schemes consists of a 
Reed-Solomon outer (applied first, removed last) code 
followed by a convolutional inner (applied last, removed 
first) code [5].  

A turbo code can be thought of as a refinement of the 
concatenated encoding structure plus an iterative 
algorithm for decoding the associated code sequence. 

Turbo codes were first introduced in 1993 by Berrou, 
Glavieux, and Thitimajshima, and reported in [6, 7], 
where a scheme is described that achieves a bit-error 
probability of 10-5 using a rate 1/2 code over an additive 
white Gaussian noise (AWGN) channel and BPSK 
modulation at an Eb/N0 of 0.7 dB.  

Section II presents the principle of RSC codes, which 
are at the root of the study of turbo-codes. Section III 
describes the construction of turbo-codes. The codes are 
constructed by using two or more component codes on 
different interleaved versions of the same information 
sequence. The decoding of turbo-codes is described in 
Section IV. Whereas, for conventional codes, the final 
step at the decoder yields hard-decision decoded bits (or, 
more generally, decoded symbols), for a concatenated 
scheme such as a turbo code to work properly, the 
decoding algorithm should not limit itself to passing hard 
decisions among the decoders. To best exploit the 
information learned from each decoder, the decoding 
algorithm must effect an exchange of soft decisions 
rather than hard decisions. For a system with two 
component codes, the concept behind turbo decoding is 
to pass soft decisions from the output of one decoder to 
the input of the other decoder, and to iterate this process 
several times so as to produce more reliable decisions. 
We thus describe the soft or extrinsic information from 
the decoder in Section V describes the error performance 
of turbo-codes. Some basic results are given before 
concluding in Section VI. 

II. RECURSIVE SYSTEMATIC CONVOLUTIONAL CODES  

 
Consider a binary rate R = 1/2 convolutional encoder 

with constraint length K and memory ν = K - 1. The 
input to the encoder at time k is a bit dk and the 
corresponding binary couple ( Xk , Yk) is equal to 

 
 
 

 
 

 
 
The RSC code, presented below, combines the 

properties of NSC and systematic codes. In particular, it 
can be better than the equivalent NSC code, at any SNR, 
for code rates larger than 2/3. A binary rate RSC code is 
obtained from a NSC code by using a feedback loop and 
setting one of the two outputs Xk or Yk equal to the input 
bit d k . The shift register (memory) input is a new binary  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Two associated Recursive systematic convolutional encoders 
with memory ν=2, rate R=1/2 and generators G1=7, G2=5. 

 
variable ak .calculated recursively as 
 

(2) 
 

where γi is respectively equal to gl i if Xk  = dk and to g2i 
if Y k = d k . Equation (2) can be rewritten as 
 
 

(3) 
 

 
Two RSC encoders with memory u = 2 and rate R = 1/2, 
obtained from a NSC encoder defined by generators G1 
=7, G2 = 5 , are depicted in Fig. 1. 
    
   When puncturing is considered, some output bits Xk, or 
Yk, are deleted according to a chosen perforation pattern 
defined by a matrix P . For instance, starting from a rate 
R = ½ code, the matrix P of rate 2/3 punctured code can 
be equal to  

 
(4) 

 
                                                                   

III. CONSTRUCTION OF TURBO CODES 

 
 Turbo-codes are constructed using parallel concatenation 
of RSC codes with non-uniform interleaving. The use of 
systematic codes enables the construction of a 
concatenated encoder in the form given in Fig. 3, called 
parallel concatenation. The data flow (dk at time k ) goes 
directly to a first elementary RSC encoder C1 and after 
interleaving, it feeds (dn at time k ) a second elementary 
RSC encoder C,. These two  

 
 
 
 
 
 
 
 
 

 
 

Fig. 2 A Simple Recursive systematic convolutional Encoder 
 
encoders are not necessarily identical. Data dk is 
systematically transmitted as symbol Xk: and 
redundancies Y1k and Y2k produced by C1 and C2 may be 
completely transmitted for an R = 1/3 encoding or 
punctured for higher rates.  The two elementary coding 
rates R1 and R2 associated with C1 and C2, after 
puncturing, may be different, but for the best decoding 
performance, they will satisfy R1 ≤ R2. The global rate R 
of the composite code, R1 and R2 are linked by (5). 
 

(5) 
 

 
Thus, the two rate 1/3 RSC encoders in Fig. 3 have been 
punctured to give rate ½ turbo-codes. Unlike the classical 
(serial) concatenation, parallel concatenation enables the 
elementary encoders, and therefore the associated 
elementary decoders, to run with the same clock. This 
point constitutes an important simplification for the 
design of the associated circuits, in a concatenated 
scheme. Good turbo codes have been constructed from 
component codes having short constraint lengths (K = 3 
to 5). There is no limit to the number of encoders that 
may be concatenated, and in general the component 
codes need not be identical with regard to constraint 
length and rate.  
 
   The goal in designing turbo codes is to choose the best 
component codes by maximizing the effective free 
distance of the code [8]. At large values of Eb/N0, this is 
tantamount to maximizing the minimum-weight 
codeword. However, at low values of Eb/N0 (the region 
of greatest interest), optimizing the weight distribution of 
the code words is more important than maximizing the 
minimum-weight codeword [9]. The turbo encoder in 
Fig. 3 produces code words from each of two component 
encoders. The weight distribution for the code words out 
of this parallel concatenation depends on how the code 
words from one of the component encoders are combined 
with code words from the other encoder. Intuitively, we 
should avoid pairing low-weight code words from one 
encoder with low-weight code words from the other 
encoder. Many such pairings can be avoided by proper 
design of the interleaver. An interleaver that permutes  
 
 
 



 
 
 
 
 
 
 
 

 
Fig. 3  Basic  turbo-encoder (rate 1/3) 

 
the data in a random fashion provides better performance 
than the familiar block interleaver . Such an interleaver is 
called the Non-uniform interleaver.  
 
    Non-uniform interleaving must satisfy two main 
conditions: the maximum scattering of data, as in usual 
interleaving, and the maximum disorder in the 
interleaved data sequence. The latter, which may be in 
conflict with the former, is to make redundancy 
generation by the two encoders as diverse as possible. In 
this case, if the decision by the decoder associated with 
C1 about particular data implies a few items of 
redundancy Yl, then the corresponding decision by the 
decoder associated with C2 will rely on a large number of 
values Y2, and vice-versa. Then, the minimum distance 
of the turbo-code may be increased to much larger values 
than that given by uniform interleaving. 
 
   If the component encoders are not recursive, the unit 
weight input sequence 0 0 … 0 0 1 0 0 … 0 0 will always 
generate a low-weight codeword at the input of a second 
encoder for any interleaver design. In other words, the 
interleaver would not influence the output-codeword 
weight distribution if the component codes were not 
recursive. However, if the component codes are 
recursive, a weight-1 input sequence generates an infinite 
impulse response (infinite-weight output). Therefore, for 
the case of recursive codes, the weight-1 input sequence 
does not yield the minimum-weight codeword out of the 
encoder. The encoded output weight is kept finite only by 
trellis termination, a process that forces the coded 
sequence to terminate in such a way that the encoder 
returns to the zero state. In effect, the convolutional code 
is converted to a block code. The important aspect of the 
building blocks used in turbo codes is that they are 
recursive (the systematic aspect is merely incidental). It is 
the RSC code’s IIR property that protects against the 
generation of low-weight code words that cannot be 
remedied by an interleaver. One can argue that turbo 
code performance is largely influenced by minimum-
weight code words that result from the weight-2 input 
sequence. The argument is that weight-1 inputs can be 
ignored, since they yield large codeword weights due to 
the IIR encoder structure. For input sequences having 
weight-3 and larger, a properly designed interleaver 
makes the occurrence of low-weight output code words 
relatively rare [8]. 
 
 

 
 
 
 
 
 

 
Fig. 4 Likelihood functions 

 
Hence, one important property of the turbo-code is that 
its minimum distance dm is not fixed, chiefly, by the 
constituent RSC codes but by the interleaving function 
and finding out the optimum interleaver for turbo-codes 
remains a real challenge. 

IV. DECODING TURBO-CODES 

 
A. Log-likelihood ratio 
 
Let the binary logical elements 1 and 0 be represented 
electronically by voltages +1 and -1, respectively. The 
variable d is used to represent the transmitted data bit, 
whether it appears as a voltage or as a logical element. 
Sometimes one format is more convenient than the other; 
the reader should be able to recognize the difference 
from the context. Let the binary 0 (or the voltage value -
1) be the null element under addition. For signal 
transmission over an AWGN channel, Fig. 4 shows the 
conditional pdfs referred to as likelihood functions. In 
Fig. 4, one such arbitrary value xk is shown, where the 
index denotes an observation in the kth time interval. A 
line subtended from xk intercepts the two likelihood 
functions, yielding two likelihood values ℓ1 = p(xk|dk = 
+1) and ℓ2 = p(xk|dk = -1). A well-known hard-decision 
rule, known as maximum likelihood, is to choose the data 
dk = +1 or dk = -1 associated with the larger of the two 
intercept values, ℓ1 or ℓ2, respectively. For each data bit 
at time k, this is tantamount to deciding that dk = +1 if xk 
falls on the right side of the decision line labeled γ0, 
otherwise deciding that dk = -1. 
 
   A similar decision rule, known as maximum a 
posteriori (MAP), which can be shown to be a minimum 
probability of error rule, takes into account the a priori 
probabilities of the data. The general expression for the 
MAP rule in terms of APPs is as follows: 
 
 

(6) 
 

 
Equation (6) states that you should choose the hypothesis 
H1, (d = +1), if the APP P(d = +1|x), is greater than the 
APP P(d = -1|x). Otherwise, you should choose 
hypothesis H2, (d= -1). Using the Bayes’ theorem, the 
APPs in Equation (6) can be replaced by their equivalent 
expressions, yielding the following: 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5 Soft input/soft output decoder 
 
 
 

(7) 
 

Equation (7) is generally expressed in terms of a ratio, 
yielding the so-called likelihood ratio test, as follows: 
 
 

(8) 
 

 
By taking the logarithm of the likelihood ratio, we obtain 
a useful metric called the log-likelihood ratio (LLR). It is 
a real number representing a soft decision output of a 
detector, designated as follows: 
 
 

(9) 
 

 
(10) 

 
(11) 

 
To simplify the notation, Equation (11) is rewritten as 
follows: 
 

                                             (12) 
 
where the notation Lc(x) emphasizes that this LLR term 
is the result of a channel measurement made at the 
receiver. The equations above were developed with only 
a data detector in mind. Next, the introduction of a 
decoder will typically yield decision-making benefits. 
For a systematic code, it can be shown  that the LLR (soft 
output)   out of the decoder is equal to Equation (13): 

(13) 
 

where  is the LLR of a data bit out of the 
demodulator (input to the decoder), and  , called 
the extrinsic LLR, represents extra knowledge gleaned 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6 Feedback decoder 
 
from the decoding process. The output sequence of a 
systematic decoder is made up of values representing 
data bits and parity bits. From Equations (12) and (13), 
the output LLR  of the decoder is now written as 
follows: 

(14) 
 

Equation (14) shows that the output LLR of a systematic 
decoder can be represented as having three LLR 
elements—a channel measurement, a priori knowledge of 
the data, and an extrinsic LLR stemming solely from the 
decoder. To yield the final  , each of the individual 
LLRs can be added as shown in Equation (14), because 
the three terms are statistically independent. This soft 
decoder output  is a real number that provides a 
hard decision as well as the reliability of that decision. 
The sign of  denotes the hard decision; that is, for 
positive values of  decide that d = +1, and for 
negative values decide that d =-1. The magnitude of 

 denotes the reliability of that decision. Often, the 
value of  due to the decoding has the same sign as 
Lc(x) + L(d), and therefore acts to improve the reliability 
of   .  
 
B. Principles of Iterative (Turbo) Decoding 
 
In a typical communications receiver, a demodulator is 
often designed to produce soft decisions, which are then 
transferred to a decoder. The improvement in error-
performance of systems utilizing such soft decisions is 
typically approximated as 2 dB, as compared to hard 
decisions in AWGN. Such a decoder could be called a 
soft input/ hard output decoder, because the final 
decoding process out of the decoder must terminate in 
bits (hard decisions). With turbo codes, where two or 
more component codes are used, and decoding involves 
feeding outputs from one decoder to the inputs of other 
decoders in an iterative fashion, a hard-output decoder 
would not be suitable. That is because hard decisions into 
a decoder degrades system performance (compared to 
soft decisions). Hence, what is needed for the decoding 
of turbo codes is a soft input/ soft output decoder. For the 
first decoding iteration of such a soft input/soft output 



decoder, illustrated in Figure 5, we generally assume the 
binary data to be equally likely, yielding an initial a priori 
LLR value of L(d)=0. The channel LLR value, Lc(x), is 
measured by forming the logarithm of the ratio of the 
values of ℓ1 and ℓ2 for a particular observation of x (see 
Fig. 4), which appears as the second term in Equation 
(10). The output  of the decoder in Fig. 5 is made 
up of the LLR from the detector,  , and the 
extrinsic LLR output, , representing knowledge 
gleaned from the decoding process. As illustrated in Fig. 
5, for iterative decoding, the extrinsic likelihood is fed 
back to the decoder input, to serve as a refinement of the 
a priori probability of the data for the next iteration. 
 
C. Feedback Decoders 
 
     The Viterbi algorithm (VA) is an optimal decoding 
method for minimizing the probability of sequence error. 
Unfortunately, the VA is not suited to generate the a 
posteriori probability (APP) or soft-decision output for 
each decoded bit. A relevant algorithm for doing this has 
been proposed by Bahl et al. [10].  The Bahl algorithm 
was modified by Berrou, et al. [6] for use in decoding 
RSC codes. The Bahl algorithm can be used for decoding 
of turbo-codes using the feedback decoder shown in Fig. 
6. The fundamental principle for feeding back 
information to another decoder is that a decoder should 
never be supplied with information that stems from itself 
(because the input and output corruption will be highly 
correlated). 

V. ERROR PERFORMANCE OF TURBO-CODES 

 
Performance results using Monte Carlo simulations have 
been presented in [3] for a rate 1/2, K = 5 encoder 
implemented with generators G1 = {1 1 1 1 1} and G2 = 
{1 0 0 0 1}, using parallel concatenation and a 256 × 256 
array interleaver. The modified Bahl algorithm was used 
with a data block length of 65,536 bits. After 18 decoder 
iterations, the bit-error probability PB was less than 10-5 
at Eb/N0 = 0.7 dB. The error-performance improvement 
as a function of the number of decoder iterations is seen 
in Fig 7. For binary modulation, several authors use PB = 
10-5 and Eb/N0 = 0.2 dB as a pragmatic Shannon limit 
reference for a rate ½ code. Thus, with parallel 
concatenation of RSC convolutional codes and feedback 
decoding, the error performance of a turbo code at PB = 
10-5 is within 0.5 dB of the (pragmatic) Shannon limit.  

VI. CONCLUSIONS 

 
This article described the concept of turbo coding, whose 
basic configuration depends on the concatenation of two 
or more component codes.Basic statistical measures such 

 
Fig. 7 Bit-error probability as a function of Eb/N0 and multiple 
iterations 
 
as a posteriori probability and likelihood were reviewed, 
and these measures were used to describe the error 
performance of a soft input/soft output decoder   We 
showed how performance is improved when soft outputs 
from concatenated decoders are used in an iterative 
decoding process. We applied these concepts to the 
parallel concatenation of recursive systematic 
convolutional (RSC) codes, and explained why such 
codes are the preferred building blocks in turbo codes. A 
feedback decoder was described in general ways, and its 
remarkable performance was presented. 
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