
Fundamentals of Turbo Codes
E Sowmya Sudha (03010215), Y. Praveen Kumar (03010240), Kanchan Mishra (03010242)

Department of Electronics and Communication Engineering
Indian Institute of Technology, Guwahati (India)

{esudha, ypkumar, kanchan}@iitg.ernet.in

Abstract — This paper presents fundamentals of a family of
convolutional codes, nicknamed turbo-codes, built from a
particular concatenation of two recursive systematic codes,
linked together by non uniform interleaving. Decoding calls
on iterative processing in which each component decoder
takes advantage of the work of the other at the previous step,
with the aid of the original concept of extrinsic information.
For sufficiently large interleaving sizes, the correcting
performance of turbo-codes,investigated by simulation, appears
to be close to the theoretical limit predicted by Shannon.

I. INTRODUCTION

Convolutional error correcting or channel coding has

become widespread in the design of digital transmission
systems. One major reason for this is the possibility of
achieving real-time decoding without noticeable
information losses thanks to the well-known soft-input
Viterbi algorithm [I].Moreover, the same decoder may
serve for various coding rates by means of puncturing
[2]. Two kinds of convolutional codes are of practical
interest: nonsystematic convolutional (NSC) and
recursive systematic convolutional (RSC) codes. Though
RSC codes have the same free distance df as NSC codes
and exhibit better performance at low signal to noise
ratios (SNR’s) and/or when punctured, only NSC codes
have actually been considered for channel coding, except
in Trellis-coded modulation (TCM) [3]. For a given rate,
the error-correcting power of convolutional codes,
measured as the coding gain at a certain binary error rate
(BER) in comparison with the uncoded transmission,
grows more or less linearly with code memory ν.
Unfortunately, the complexity of the decoder is not a
linear function of ν and it grows exponentially as ν.2 ν.

In order to obtain high coding gains with moderate
decoding complexity, concatenation has proved to be an
attractive scheme. Concatenated coding schemes were
first proposed by Forney [4] as a method for achieving
large coding gains by combining two or more relatively
simple building blocks or component codes (sometimes
called constituent codes). The resulting codes had the
error-correction capability of much longer codes, and
they were endowed with a structure that permitted
relatively easy to moderately complex decoding. A serial
concatenation of codes is most often used for power-
limited systems such as transmitters on deep-space
probes. The most popular of these schemes consists of a
Reed-Solomon outer (applied first, removed last) code
followed by a convolutional inner (applied last, removed
first) code [5].

A turbo code can be thought of as a refinement of the
concatenated encoding structure plus an iterative
algorithm for decoding the associated code sequence.

Turbo codes were first introduced in 1993 by Berrou,
Glavieux, and Thitimajshima, and reported in [6, 7],
where a scheme is described that achieves a bit-error
probability of 10-5 using a rate 1/2 code over an additive
white Gaussian noise (AWGN) channel and BPSK
modulation at an Eb/N0 of 0.7 dB.

Section II presents the principle of RSC codes, which
are at the root of the study of turbo-codes. Section III
describes the construction of turbo-codes. The codes are
constructed by using two or more component codes on
different interleaved versions of the same information
sequence. The decoding of turbo-codes is described in
Section IV. Whereas, for conventional codes, the final
step at the decoder yields hard-decision decoded bits (or,
more generally, decoded symbols), for a concatenated
scheme such as a turbo code to work properly, the
decoding algorithm should not limit itself to passing hard
decisions among the decoders. To best exploit the
information learned from each decoder, the decoding
algorithm must effect an exchange of soft decisions
rather than hard decisions. For a system with two
component codes, the concept behind turbo decoding is
to pass soft decisions from the output of one decoder to
the input of the other decoder, and to iterate this process
several times so as to produce more reliable decisions.
We thus describe the soft or extrinsic information from
the decoder in Section V describes the error performance
of turbo-codes. Some basic results are given before
concluding in Section VI.

II. RECURSIVE SYSTEMATIC CONVOLUTIONAL CODES

Consider a binary rate R = 1/2 convolutional encoder

with constraint length K and memory ν = K - 1. The
input to the encoder at time k is a bit dk and the
corresponding binary couple (Xk , Yk) is equal to

The RSC code, presented below, combines the

properties of NSC and systematic codes. In particular, it
can be better than the equivalent NSC code, at any SNR,
for code rates larger than 2/3. A binary rate RSC code is
obtained from a NSC code by using a feedback loop and
setting one of the two outputs Xk or Yk equal to the input
bit d k . The shift register (memory) input is a new binary

Fig. 1 Two associated Recursive systematic convolutional encoders
with memory ν=2, rate R=1/2 and generators G1=7, G2=5.

variable ak .calculated recursively as

(2)

where γi is respectively equal to gl i if Xk = dk and to g2i
if Y k = d k . Equation (2) can be rewritten as

(3)

Two RSC encoders with memory u = 2 and rate R = 1/2,
obtained from a NSC encoder defined by generators G1
=7, G2 = 5 , are depicted in Fig. 1.

 When puncturing is considered, some output bits Xk, or
Yk, are deleted according to a chosen perforation pattern
defined by a matrix P . For instance, starting from a rate
R = ½ code, the matrix P of rate 2/3 punctured code can
be equal to

(4)

III. CONSTRUCTION OF TURBO CODES

 Turbo-codes are constructed using parallel concatenation
of RSC codes with non-uniform interleaving. The use of
systematic codes enables the construction of a
concatenated encoder in the form given in Fig. 3, called
parallel concatenation. The data flow (dk at time k) goes
directly to a first elementary RSC encoder C1 and after
interleaving, it feeds (dn at time k) a second elementary
RSC encoder C,. These two

Fig. 2 A Simple Recursive systematic convolutional Encoder

encoders are not necessarily identical. Data dk is
systematically transmitted as symbol Xk: and
redundancies Y1k and Y2k produced by C1 and C2 may be
completely transmitted for an R = 1/3 encoding or
punctured for higher rates. The two elementary coding
rates R1 and R2 associated with C1 and C2, after
puncturing, may be different, but for the best decoding
performance, they will satisfy R1 ≤ R2. The global rate R
of the composite code, R1 and R2 are linked by (5).

(5)

Thus, the two rate 1/3 RSC encoders in Fig. 3 have been
punctured to give rate ½ turbo-codes. Unlike the classical
(serial) concatenation, parallel concatenation enables the
elementary encoders, and therefore the associated
elementary decoders, to run with the same clock. This
point constitutes an important simplification for the
design of the associated circuits, in a concatenated
scheme. Good turbo codes have been constructed from
component codes having short constraint lengths (K = 3
to 5). There is no limit to the number of encoders that
may be concatenated, and in general the component
codes need not be identical with regard to constraint
length and rate.

 The goal in designing turbo codes is to choose the best
component codes by maximizing the effective free
distance of the code [8]. At large values of Eb/N0, this is
tantamount to maximizing the minimum-weight
codeword. However, at low values of Eb/N0 (the region
of greatest interest), optimizing the weight distribution of
the code words is more important than maximizing the
minimum-weight codeword [9]. The turbo encoder in
Fig. 3 produces code words from each of two component
encoders. The weight distribution for the code words out
of this parallel concatenation depends on how the code
words from one of the component encoders are combined
with code words from the other encoder. Intuitively, we
should avoid pairing low-weight code words from one
encoder with low-weight code words from the other
encoder. Many such pairings can be avoided by proper
design of the interleaver. An interleaver that permutes

Fig. 3 Basic turbo-encoder (rate 1/3)

the data in a random fashion provides better performance
than the familiar block interleaver . Such an interleaver is
called the Non-uniform interleaver.

 Non-uniform interleaving must satisfy two main
conditions: the maximum scattering of data, as in usual
interleaving, and the maximum disorder in the
interleaved data sequence. The latter, which may be in
conflict with the former, is to make redundancy
generation by the two encoders as diverse as possible. In
this case, if the decision by the decoder associated with
C1 about particular data implies a few items of
redundancy Yl, then the corresponding decision by the
decoder associated with C2 will rely on a large number of
values Y2, and vice-versa. Then, the minimum distance
of the turbo-code may be increased to much larger values
than that given by uniform interleaving.

 If the component encoders are not recursive, the unit
weight input sequence 0 0 … 0 0 1 0 0 … 0 0 will always
generate a low-weight codeword at the input of a second
encoder for any interleaver design. In other words, the
interleaver would not influence the output-codeword
weight distribution if the component codes were not
recursive. However, if the component codes are
recursive, a weight-1 input sequence generates an infinite
impulse response (infinite-weight output). Therefore, for
the case of recursive codes, the weight-1 input sequence
does not yield the minimum-weight codeword out of the
encoder. The encoded output weight is kept finite only by
trellis termination, a process that forces the coded
sequence to terminate in such a way that the encoder
returns to the zero state. In effect, the convolutional code
is converted to a block code. The important aspect of the
building blocks used in turbo codes is that they are
recursive (the systematic aspect is merely incidental). It is
the RSC code’s IIR property that protects against the
generation of low-weight code words that cannot be
remedied by an interleaver. One can argue that turbo
code performance is largely influenced by minimum-
weight code words that result from the weight-2 input
sequence. The argument is that weight-1 inputs can be
ignored, since they yield large codeword weights due to
the IIR encoder structure. For input sequences having
weight-3 and larger, a properly designed interleaver
makes the occurrence of low-weight output code words
relatively rare [8].

Fig. 4 Likelihood functions

Hence, one important property of the turbo-code is that
its minimum distance dm is not fixed, chiefly, by the
constituent RSC codes but by the interleaving function
and finding out the optimum interleaver for turbo-codes
remains a real challenge.

IV. DECODING TURBO-CODES

A. Log-likelihood ratio

Let the binary logical elements 1 and 0 be represented
electronically by voltages +1 and -1, respectively. The
variable d is used to represent the transmitted data bit,
whether it appears as a voltage or as a logical element.
Sometimes one format is more convenient than the other;
the reader should be able to recognize the difference
from the context. Let the binary 0 (or the voltage value -
1) be the null element under addition. For signal
transmission over an AWGN channel, Fig. 4 shows the
conditional pdfs referred to as likelihood functions. In
Fig. 4, one such arbitrary value xk is shown, where the
index denotes an observation in the kth time interval. A
line subtended from xk intercepts the two likelihood
functions, yielding two likelihood values ℓ1 = p(xk|dk =
+1) and ℓ2 = p(xk|dk = -1). A well-known hard-decision
rule, known as maximum likelihood, is to choose the data
dk = +1 or dk = -1 associated with the larger of the two
intercept values, ℓ1 or ℓ2, respectively. For each data bit
at time k, this is tantamount to deciding that dk = +1 if xk
falls on the right side of the decision line labeled γ0,
otherwise deciding that dk = -1.

 A similar decision rule, known as maximum a
posteriori (MAP), which can be shown to be a minimum
probability of error rule, takes into account the a priori
probabilities of the data. The general expression for the
MAP rule in terms of APPs is as follows:

(6)

Equation (6) states that you should choose the hypothesis
H1, (d = +1), if the APP P(d = +1|x), is greater than the
APP P(d = -1|x). Otherwise, you should choose
hypothesis H2, (d= -1). Using the Bayes’ theorem, the
APPs in Equation (6) can be replaced by their equivalent
expressions, yielding the following:

Fig. 5 Soft input/soft output decoder

(7)

Equation (7) is generally expressed in terms of a ratio,
yielding the so-called likelihood ratio test, as follows:

(8)

By taking the logarithm of the likelihood ratio, we obtain
a useful metric called the log-likelihood ratio (LLR). It is
a real number representing a soft decision output of a
detector, designated as follows:

(9)

(10)

(11)

To simplify the notation, Equation (11) is rewritten as
follows:

 (12)

where the notation Lc(x) emphasizes that this LLR term
is the result of a channel measurement made at the
receiver. The equations above were developed with only
a data detector in mind. Next, the introduction of a
decoder will typically yield decision-making benefits.
For a systematic code, it can be shown that the LLR (soft
output) out of the decoder is equal to Equation (13):

(13)

where is the LLR of a data bit out of the
demodulator (input to the decoder), and , called
the extrinsic LLR, represents extra knowledge gleaned

Fig. 6 Feedback decoder

from the decoding process. The output sequence of a
systematic decoder is made up of values representing
data bits and parity bits. From Equations (12) and (13),
the output LLR of the decoder is now written as
follows:

(14)

Equation (14) shows that the output LLR of a systematic
decoder can be represented as having three LLR
elements—a channel measurement, a priori knowledge of
the data, and an extrinsic LLR stemming solely from the
decoder. To yield the final , each of the individual
LLRs can be added as shown in Equation (14), because
the three terms are statistically independent. This soft
decoder output is a real number that provides a
hard decision as well as the reliability of that decision.
The sign of denotes the hard decision; that is, for
positive values of decide that d = +1, and for
negative values decide that d =-1. The magnitude of

 denotes the reliability of that decision. Often, the
value of due to the decoding has the same sign as
Lc(x) + L(d), and therefore acts to improve the reliability
of .

B. Principles of Iterative (Turbo) Decoding

In a typical communications receiver, a demodulator is
often designed to produce soft decisions, which are then
transferred to a decoder. The improvement in error-
performance of systems utilizing such soft decisions is
typically approximated as 2 dB, as compared to hard
decisions in AWGN. Such a decoder could be called a
soft input/ hard output decoder, because the final
decoding process out of the decoder must terminate in
bits (hard decisions). With turbo codes, where two or
more component codes are used, and decoding involves
feeding outputs from one decoder to the inputs of other
decoders in an iterative fashion, a hard-output decoder
would not be suitable. That is because hard decisions into
a decoder degrades system performance (compared to
soft decisions). Hence, what is needed for the decoding
of turbo codes is a soft input/ soft output decoder. For the
first decoding iteration of such a soft input/soft output

decoder, illustrated in Figure 5, we generally assume the
binary data to be equally likely, yielding an initial a priori
LLR value of L(d)=0. The channel LLR value, Lc(x), is
measured by forming the logarithm of the ratio of the
values of ℓ1 and ℓ2 for a particular observation of x (see
Fig. 4), which appears as the second term in Equation
(10). The output of the decoder in Fig. 5 is made
up of the LLR from the detector, , and the
extrinsic LLR output, , representing knowledge
gleaned from the decoding process. As illustrated in Fig.
5, for iterative decoding, the extrinsic likelihood is fed
back to the decoder input, to serve as a refinement of the
a priori probability of the data for the next iteration.

C. Feedback Decoders

 The Viterbi algorithm (VA) is an optimal decoding
method for minimizing the probability of sequence error.
Unfortunately, the VA is not suited to generate the a
posteriori probability (APP) or soft-decision output for
each decoded bit. A relevant algorithm for doing this has
been proposed by Bahl et al. [10]. The Bahl algorithm
was modified by Berrou, et al. [6] for use in decoding
RSC codes. The Bahl algorithm can be used for decoding
of turbo-codes using the feedback decoder shown in Fig.
6. The fundamental principle for feeding back
information to another decoder is that a decoder should
never be supplied with information that stems from itself
(because the input and output corruption will be highly
correlated).

V. ERROR PERFORMANCE OF TURBO-CODES

Performance results using Monte Carlo simulations have
been presented in [3] for a rate 1/2, K = 5 encoder
implemented with generators G1 = {1 1 1 1 1} and G2 =
{1 0 0 0 1}, using parallel concatenation and a 256 × 256
array interleaver. The modified Bahl algorithm was used
with a data block length of 65,536 bits. After 18 decoder
iterations, the bit-error probability PB was less than 10-5
at Eb/N0 = 0.7 dB. The error-performance improvement
as a function of the number of decoder iterations is seen
in Fig 7. For binary modulation, several authors use PB =
10-5 and Eb/N0 = 0.2 dB as a pragmatic Shannon limit
reference for a rate ½ code. Thus, with parallel
concatenation of RSC convolutional codes and feedback
decoding, the error performance of a turbo code at PB =
10-5 is within 0.5 dB of the (pragmatic) Shannon limit.

VI. CONCLUSIONS

This article described the concept of turbo coding, whose
basic configuration depends on the concatenation of two
or more component codes.Basic statistical measures such

Fig. 7 Bit-error probability as a function of Eb/N0 and multiple
iterations

as a posteriori probability and likelihood were reviewed,
and these measures were used to describe the error
performance of a soft input/soft output decoder We
showed how performance is improved when soft outputs
from concatenated decoders are used in an iterative
decoding process. We applied these concepts to the
parallel concatenation of recursive systematic
convolutional (RSC) codes, and explained why such
codes are the preferred building blocks in turbo codes. A
feedback decoder was described in general ways, and its
remarkable performance was presented.

REFERENCES

[1] G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3,
 pp.268-278, Mar. 1973.
[2] J. B. Cain, G. C. Clark, and J. M. Geist, “Punctured convolutional
 codes of rate (n-l)/n and simplified maximum likelihood

decoding,”IEEE Trans. Inform. Theory, vol. IT-25, pp. 97-100, Jan
1979.

[3] G. Ungerboeck, “Channel coding with multilevel/phase signals,”
 IEEE Trans. Inform. Theory, vol. IT-28, no. 1, pp. 55-67, Jan.
 1982.
[4] Forney, G. D., Jr., Concatenated Codes (Cambridge, MA: MIT
 Press, 1966).
[5] Yuen, J. H., et al., “Modulation and Coding for Satellite and Space
 Communications,” Proc. IEEE, vol. 78, no. 7, July 1990, pp.
 1250- 1265.
[6] Berrou, C., Glavieux, A., and Thitimajshima, P., “Near Shannon
 Limit Error-Correcting Coding and Decoding: Turbo Codes,”
 IEEE Proceedings of the Int. Conf. on Communications, Geneva,
 Switzerland, May 1993 (ICC ’93), pp. 1064-1070. ones”.
[7] Berrou, C. and Glavieux, A., “Near Optimum Error Correcting
 Coding and Decoding: Turbo-Codes,” IEEE Trans. on
 Communications, vol. 44, no. 10, October 1996, pp. 1261-1271.
[8] Divsalar, D. and McEliece, R. J., “Effective Free Distance of Turbo
 Codes,” Electronic Letters, vol. 32, no. 5, Feb. 29, 1996, pp. 445-
 446.
[9] Dolinar, S. and Divsalar, D., “Weight Distributions for Turbo
 Codes Using Random and Nonrandom Permutations,” TDA
 Progress Report 42-122, Jet Propulsion Laboratory, Pasadena,
 California, August 15, 1995, pp. 56-65.
[10] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
 of linear codes for minimizing symbol error rate,” IEEE
 Truns.Inform.Theory, vol. IT-20, pp. 248-287, Mar. 1974.

